MOTIVANDO UN PRODUCTO ESCALAR

Por Humberto Madrid de la Vega*

Sea V un espacio vectorial sobre R (el campo de los números reales). Un producto escalar sobre V es una función (>: V x V -- R que satisface las siguientes propiedades:

(a)
$$\langle x, x \rangle \ge 0$$
 , $\langle x, x \rangle = 0$ si y solo si $x = 0$

(b)
$$\langle x,y \rangle = \langle y,x \rangle$$

(c)
$$\langle \alpha x + \beta x', y \rangle = \alpha \langle x, y \rangle + \beta \langle x', y \rangle$$

para todo x, x', $y \in V$ y $\alpha, \beta \in R$.

Dos de los ejemplos más comunes de producto escalar son:

1) Sea
$$V = R^n$$
 y $(x,y) = \sum_{i=1}^{n} x_i y_i$
si $x = (x_1, ..., x_n)$; $y = (y_1, ..., y_n)$

2) Sea $C_{[a,b]}$ el espacio vectorial de funciones continuas $f:[a,b] \rightarrow R$. Si $f,g \in C_{[a,b]}$, sea

$$\langle f, g \rangle = \int_{a}^{b} f(x) g(x) dx$$

Observese que si $k = (k_1, ..., k_n)$ es un vector no-cero de R^n tal que $k_i \ge 0$ para toda i=1,2,...,n, la función $\langle x,y \rangle_k = \sum_{i=1}^n k_i x_i y_i$ define un producto

^{*} Profesor de Carrera de la Facultad de Ciencias, UNAM.

escalar en R^n . En particular si $k_i = 1$ para toda i = 1, 2, ..., n, se obtiene el producto escalar usual en R^n (ver ejemplo 1); y si k es un real no-cero, $k = k_i$ para toda i, se tiene que $\langle x, y \rangle_k = \sum_{i=1}^n k_i x_i y_i = k(x, y)$ define un producto escalar en R^n ((x, y) denota el producto escalar usual en R^n).

La presente nota tiene como objeto motivar el producto escalar del ejemplo 2) a partir de la observación anterior.

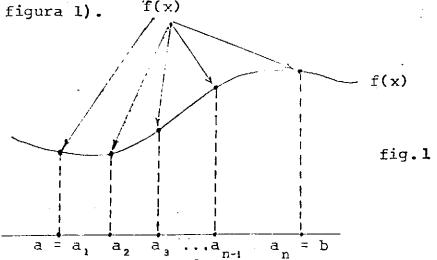
Sea a_1, \ldots, a_n un número finito de puntos distintos de R y sea V_n el conjunto de las funciones $f:\{a_1,\ldots,a_n\}\longrightarrow R$. V_n es un espacio vectorial de dimensión n sobre R (una base está dada por las funciones $f_i(a_i)=1$, $f_i(a_j)=0$ $i\neq j$, $i=1,2,\ldots,n$) el cual bajo la correspondencia $V_n\longrightarrow R^n$ $f\longrightarrow (f(a_1),\ldots,f(a_n))$ es isomorfo a R^n .

Si $k = (k_1, ..., k_n) \neq 0$ es un vector fijo en \mathbb{R}^n .

con $k_i \geq 0$ para toda i, la función $\langle f, g \rangle_k = \sum_{i=1}^n k_i f(a_i) g(a_i)$ define un producto escalar en v_n .

Sea $C_{[a,b]}$ el espacio vectorial del ejemplo 2, $a = x_1, ..., x_n = b$ una partición de [a,b] y sea v_n el espacio vectorial de funciones f las cuales son

restricción a $\{x_1, \dots, x_n\}$ de elementos de $C_{[a,b]}$. (ver figura 1). $\hat{f}(x)$



Obsérvese que desde un punto de vista informal, si n "crece", $\mathbf{f} \in V_n$ se aproxima a f y por lo tanto v_n se "parece" más a v.

Sea ΔX el vector de R^n cuyas coordenadas son $\Delta X_i = x_i - x_{i-1}$. Asociado a este vector se tiene el producto escalar en $V_n: \langle \widetilde{f}, \widetilde{g} \rangle_{\Delta X} = \sum_{i=1}^n \widetilde{f}(x_i) g(x_i) \Delta X_i$

La parte de la derecha de ésta expresión es una aproximación a $\int_a^b f(x)g(x)dx$ y si $n \to \infty$, mejor es la aproximación a la integral.

Así, resulta natural definir en C_[a,b] el producto escalar como expresado en el ejemplo 2.